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Weakly nonlinear theory of regular meanders 
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Flow and bed topography in a regular sequence of meanders is shown to be strongly 
influenced by nonlinear effects within a fairly wide range of aspect ratios of the 
channel and meander wavenumbers. This finding is associated with the behaviour of 
meanders as nonlinear resonators in a neighbourhood of the resonance conditions 
discovered by Blondeaux & Seminara (1985). A weakly nonlinear approach valid for 
relatively small measures of channel curvature and within a neighbourhood of the 
resonant conditions displays all the typical features of nonlinear resonators, 
including non-uniqueness of the channel response. The nonlinear structure of forced 
bars close to resonance is also shown to be related to that of nonlinear free steady 
bars spatially developing in a straight channel from a non-uniform initial condition. 
Finally we show how to reconcile the intrinsic nonlinearity of the near-resonant 
channel response with traditional bend stability theories. Some comparison with a 
systematic set of experimental observations of Colombini, Tubino & Whiting (1990) 
provides qualitative support for the present theory but also suggests that strongly 
nonlinear effects may play a non-negligible role for fairly small values of channel 
curvature. The main implication of this work is the clear need to revisit the literature 
on the modelling of flow and bed topography in river meanders, which is mostly 
based on linear theories. 

1. Introduction 
Modelling flow and bed topography in meandering channels has long attracted the 

attention of scientists in the fields of fluvial engineering and fluvial geomorphology . 
Motivation for this study comes from its relevance both to the solution of several 
practical problems of river engineering and to the understanding of some basic 
mechanisms involved in the process of formation and development of river meanders. 

The present paper analyses flow and bed topography in a regular sequence of 
meanders, each characterized by a curvature distribution described by the well- 
known ‘sine generated curve’ of Langbein & Leopold (1966). This viewpoint, very 
commonly employed in the literature, is considered as the basis of a fundamental 
step towards the understanding of the formation of the variety of meandering 
patterns occurring in nature. It is known that their degree of regularity may vary 
considerably (see Ferguson 1975). However, the availability of a sound model for 
flow and bed topography in a regular sequence of meanders, besides its intrinsic 
relevance, seems to be an appropriate basis for future investigation of the origin of 
irregular patterns of river meanders. 

Recent efforts of various scientists have been successful in substantiating some 
reasonable lines of attack to the ‘regular’ problem described above, by approaches 
sufficiently sophisticated to pick up the main physical processes involved in the 
phenomenon, but still simple enough to provide a manageable tool for analytical 
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investigation. In fact the works of Rozovskii (1957), Engelund (1974), Kalkwijk & de 
Vriend (1980), Ikeda, Parker & Sawai (1981), Johannesson & Parker (1989), Tubino 
& Seminara (1990) among others, have suggested the suitability of quasi two- 
dimensional models of the flow field, i.e. two-dimensional de Saint-Venant equations 
modified to account for the dispersive effect of the helical secondary flow induced by 
channel curvature on the transport of longitudinal momentum. The above equations, 
supplemented by the continuity equation of the sediment and by some constitutive 
equation describing the dynamics of sediment motion on sloping boundaries, provide 
a closed set of equations which exhibit a rich variety of solutions. 

The picture emerging from theoretical investigations (see Seminara & Tubino 1989 
for a recent review), along with experimental and field observations, suggests that 
rivers behave as nonlinear dynamical systems and exhibit most of their classical 
features. 

In the absence of curvature the dynamical character of these systems is related to 
the occurrence of bottom instability. The latter may operate at different spatial 
scales based on channel width (alternating bars), on flow depth (dunes, antidunes, 
ridges) or on a smaller scale (ripples). In particular, alternating-bar instability, 
widely investigated in the 1970s at a linear level, occurs for sufficiently wide channels 
and leads to the development of large-scale bedforms, i.e. sediment waves migrating 
at typical speeds of metres per day. This perturbed configuration has been shown to 
bifurcate from the unperturbed uniform flow and bed topography in the form of a 
supercritical Hopf bifurcation (Colombini, Seminara & Tubino 1987). 

A second source of non-equilibrium of rivers is bank erosion which may lead to the 
development of curvature of the channel axis. The latter forces the formation of 
steady sequences of pools and riffles (often called ‘point bars’) which follow the 
development of the meander pattern, generally slightly out of phase with respect to 
curvature. Blondeaux & Seminara (1985) showed that the forcing effect of curvature 
in a periodic sequence of meanders may lead to the resonant excitation of a class of 
alternating bars characterized by vanishing growth rate, i.e. steady and non- 
amplifying. The above finding was based on a linear theory of flow and bed 
topography in river meanders, hence it predicted an infinite peak of the linear 
response at  resonance. Since the above work appeared, the occurrence of resonance 
was confirmed by Seminara & Tubino (1985), Johannesson & Parker (1989) and 
Odgaard (1989) (see Seminara & Tubino’s 1991 discussion) on the basis of different 
linear models. The basic requirements for resonance to occur are that for given 
averaged flow and sediment characteristics, the dimensionless meander wavenurnber 
h and the undisturbed width-to-depth ratio /3 of the channel coincide with the 
marginal values (A,, /3,) corresponding to steady non-amplifying alternating bars. 

The above resonance conditions have been associated with meander formation 
(through so called ‘bend theories’) as they lead to a peak of bottom stress and thus 
to maximum potential bank erosion and bend amplification. The latter line of 
reasoning is based on various simplifying assumptions which will be recalled in $7. 

A dual viewpoint, which turns out to be strongly related to the idea of resonance, 
has been pursued in the 1980s by the Dutch School (see Struiksma et al. 1985). 
Basically the idea is to associate meander formation with the planimetric growth of 
steady bottom perturbations which develop spatially within the initially straight 
channel starting from some perturbed initial condition in space. Since the marginal 
conditions for spatially growing perturbations coincide with the resonant conditions 
of Blondeaux & Seminara (1985) the above two approaches appear to be strongly 
related. 
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In the present contribution we intend to remove one of the basic restrictions of 
both the above approaches: the assumption of linearity, i.e. the restriction to small- 
amplitude perturbations of flow and bed topography. It will be shown that the 
nonlinear theory of near-resonant meanders is related to the nonlinear theory of 
spatially growing disturbances. Nonlinearity turns out to damp both the infinite 
peak in the response detected by linear theory of resonance and the indefinite 
exponential growth of spatially growing bars. Furthermore the nonlinear amplitude 
equation governing the response of near-resonant meanders is found to consist of a 
homogeneous part which coincides with the amplitude equation governing the 
spatial development of steady bars and a non-homogeneous part describing the 
forcing effect of curvature. In other words it is confirmed at a nonlinear level that at 
resonance curvature forces a natural response of the channel consisting of steady 
bars. 

The relevance of the above results appears to be related to an important question 
which originally motivated the present investigation. Indeed the occurrence of 
resonance and the need to account for nonlinearity in order to remove the infinite 
response predicted by linear theory makes one wonder how wide is the range of 
meander wavenumbers and aspect ratios of the channel cross-section where the 
effects of resonance are significant. Knowledge of the behaviour of classical nonlinear 
resonators, like that associated with Duffing equation (see, for instance, Thompson 
& Stewart 1986, p. 72) suggests the possibility that nonlinearity may widen the 
resonant range and lead to  further interesting features like non-uniqueness of the 
nonlinear response. The analysis performed in this paper, which is based on a 
perturbation expansion in a neighbourhood of resonance, suggests that this is indeed 
the case, i.e. nonlinear resonant meanders exhibit a response which may be non- 
unique and differs significantly from the linear response within a fairly wide range of 
wavenumbers of practical significance. 

The implication of the latter results (which will have to be confirmed by strongly 
nonlinear calculations valid within a wider range of wavenumbers) is the need to 
revisit the literature on the modelling of flow and bed topography in river meanders, 
which is mostly based on linear theories. In  particular the above findings set the basis 
for an investigation of the development of finite-amplitude meanders where the 
controlling mechanism of the generation of higher (third) harmonics of the 
fundamental meander frequency is associated with flow nonlinearities, a mechanism 
distinct from the one based on geometric nonlinearities investigated by Parker, 
Diplas & Akiyama (1983). 

In order to check the consistency and correctness of the above picture Colombini, 
Tubino & Whiting (1990) performed a detailed and systematic experimental 
investigation of bed topography in meandering channels for a wide range of values 
of meander wavenumbers and width-to-depth ratios, including the resonant values. 
Though the present weakly nonlinear approach is strictly valid for very small 
channel curvature and experimental results reveal the presence of a non-negligible 
contribution of higher harmonics, nevertheless various theoretical predictions seem 
to be confirmed. 

The problem is formulated in $2. Section 3 briefly recapitulates previous results of 
linear theory of resonant meanders and linear theory of spatially growing bars. In $4 
the nonlinear development of spatially growing bars is shown to lead to an amplitude 
equation of Landau-Stuart type which allows us to predict the occurrence of a 
supercritical Hopf bifurcation. In  $5 we determine the nonlinear amplitude equation 
governing the response of river meanders in a neighbourhood of resonance. Section 
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6 is devoted to investigating the solutions of the latter amplitude equation and their 
stability. In  $ 7  we discuss some implications of the present results on bend theory of 
river meanders. Section 8 is devoted to some comparison of the present results with 
the experimental findings of Colombini et al. (1990). Finally, a discussion of the main 
results of the paper and of their validity limits is contained in the last section. 

2. Formulation of the problem 
The theoretical investigation of flow and bed topography in meandering channels 

poses a complex mathematical problem which requires some model of a three- 
dimensional turbulent flow field and of the mechanics of sediment transport on 
sloping boundaries. 

The approach we employ herein is similar to the one recently used by Tubino & 
Seminara (1990) (hereinafter referred to as TS) to investigate the interaction between 
free migrating alternating bars and forced steady bars in meandering channels. We 
summarize below the basic ideas of the model and refer the reader to the above paper 
for further details. 

We consider wide curved channels with gently sloping banks. More precisely, the 
width of the channel (2B*) is assumed to greatly exceed the average flow depth D,* 
and the curvature of the wetted boundary is taken to be small enough for transverse 
turbulent diffusion of longitudinal momentum to be negligible. Furthermore we 
assume the channel axis to have constant slope S and be described by a so-called 
‘sine generated curve’ whereby we can write (see figure 1)  

R,*/r,* = rg l (s )  = el + c.c. = exp (ihs) + c.c., (1a-C) 
h = h*B*, s = s*/B*, ( 1 6  e )  

with R: twice the radius of curvature at the bend apex, r,* the local radius of 
curvature, A* the meander wavenumber, and s* the curvilinear longitudinal 
coordinate (here, and throughout the paper, an asterisk denotes a dimensional 
quantity and C.C. is complex conjugate). 

A convenient orthogonal coordinate system to describe flow and bed topography 
in such channels is (a*, n*, z* ) ,  such that n* is horizontal and z* is directed upward. 
The metric coefficients of the latter system are readily found to be (see TS, p. 133) 

having neglected the very small torsion of the channel axis and assumed the 
curvature of the channel axis to be positive when the centre of curvature lies along 
the negative n*-axis. 

The simplest approach to modelling flow and bed topography in meandering 
channels is based on two-dimensional depth-average model where account is 
properly taken of the fact that the secondary flow induced by channel curvature 
exhibits a ‘helical ’ component characterized by zero depth average. In the process 
of depth-averaging the three-dimensional Reynolds equation the latter component 
leads to some ‘dispersive’ terms which play a non-negligible role (see Kalkwijk & de 
Vriend 1980). Following the latter authors and TS we then assume the following 
decomposition of the velocity field 

u = uo(z) U(s ,  n ) ,  (3a ,  b )  
(u, U,v, V,)  = 1/U,* (u*, U*,v*, V*),  n = n*/B*, z = z*/D;, (3c-e) 

where (u*, v*) and (U*, V*) are local and depth-averaged longitudinal and transverse 
components of velocity respectively, U,* and D,* are averaged speed and depth of the 

h, = l+n*/r,*, h, = 1, h, = 1 ,  (2a-c) 

v = v[To(z; A)  el + c.c.] U(s ,  n )  +uo(z) V(s ,  n ) ,  
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2x/A: 

RQURE 1. Sketch of the channel. 

uniform unperturbed flow, uo(z)  is the vertical structure of the unperturbed uniform 
velocity distribution, and ro(z) is the vertical structure of the helical component of 
secondary flow as it emerges from fully three-dimensional linear models (see 
Seminara & Tubino 1989). Linearity of the latter models is expressed by the 
assumption of small typical curvature ratio of the channel, hence 

v = B*/R: < 1 (4) 

Though the decomposition (3a,  b )  has been previously discussed in TS it may be 
useful to recall some of its main features. 

(i) The helical component of the secondary flow scales with v' = D:/R: rather 
than v. However, in a meandering channel convective terms and metric coefficients 
involve B* rather then D,* as a spatial scale. Hence the parameter v naturally arises. 
In the analysis below we choose v as perturbation parameter and let v+O with the 
ratio B*/D: fixed. It is then convenient to write the helical component in terms of 
v rather than v' with the dispersive terms taken to be a factor D:/B: smaller than 
the original ones. 

(ii) The validity of decomposition (3a, b )  is only approximate. In fact, results from 
three-dimensional model (see Seminara & Tubino 1989) show that both vertical 
distributions associated with the depth-averaged components of u and v coincide 
with uo(z) at a linear level, and neglecting the effect of longitudinal convection. It is 
reasonable to expect that the analysis will not be greatly affected by the above 
simplification. In  fact, longitudinal convection is fully accounted for in the depth- 
averaged model and is only neglected in the evaluation of ' dispersive ' effects which 
are fairly small (see TS, figure 4). 

By substituting from (3 a, b)  into the three-dimensional Reynolds equations 
written in the present coordinate system, performing depth integration and 
neglecting transverse turbulent diffusion of longitudinal momentum we find the 
following differential equations for the depth-averaged components of the flow field : 

bra - 1 
UU,,+VU,,+H,,+- - -v9(s) -v~,(~)~(UBD),,+O(V~), D 

-~9t~(s){~[(DC"), ,+2(UDV),,]}-v(ihk,e,+o.c.)  V + 0 ( v 2 ) ,  (6) 
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(DU), s + (DV), 11 = - 4 s )  [VD + n ( m ,  ,I, 

where the local flow depth D*, the free-surface elevation H * ,  the components of 
bottom shear stress (7:, 7:) and of sediment flow rate (Q:, Q,*) in the longitudinal and 
transverse directions, and the time t * ,  are made dimensionless in the form: 

(9% b)  (H*, D*) = D$(FiH,D),  (7: 7 : )  = P U , * ~ ( ~ , ,  7 n ) ,  

Herein ps and d,* are density and diameter of the sediment modelled as uniform, p is 
water density, g is gravity, and Fo is the Froude number of the uniform unperturbed 
flow. 

Furthermore, /3 is the width ratio and Qo is a dimensionless parameter defined as 

with p bed porosity; and 

9 ( s )  = el + c.c., W,(s) = k, e ,  + c.c. ( l l a ,  b )  

where the parameter k, arises from the velocity decomposition (3a, b )  and is plotted 
versus the grain relative roughness for given values of the meander wavenumber A 
in figure 4(a) of TS. 

Notice that in the governing differential system (5)-(8)  the possibility of an 
unsteady response of bottom topography is preserved ; however, the coexistence of 
free migrating alternating bars and forced point bars is excluded in the present 
analysis. The work of TS allows us to state that such conditions are met provided the 
curvature ratio u exceeds some threshold value vth which depends on meander 
wavenumber for given values of the unperturbed Shields stress and grain relative 
roughness. Plots of vth as a function of h are given in TS. 

The differential system (5)-(8) must be supplemented by some appropriate 
constitutive equations relating bottom stresses and sediment transport rate to flow 
characteristics, appropriate account being taken of the effect of the helical component 
of secondary flow and of the deviation of the direction of sediment transport from the 
direction of average bottom stress under the gravitational effect on transverse slope. 
Following TS we then write 

z = (7s ,7n)  = [U, V+uU(k,e,+c.c.)] ( u 2 + P ) ~ C ,  ( 1 2 4  

k, = [ ~ o , z / U o , z l Z - F : H - D ?  (12b) 

where C is a friction coefficient which is given the logarithmic form 

(&) C-i = 6 + 2.5 In 

when the unperturbed bottom is assumed to be plane, and in Engelund & Hansen's 
(1967) form (&r = 6+2.51n (2zoi), -- 8' = 0.06 + O M  
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when the unperturbed bottom is assumed to be dune-covered. Herein 6 and d, denote 
dimensionless Shields stress and grain roughness respectively, defined as 

where @ is the intensity of sediment transport, Q1 is the unit vector in the direction 
of the intersection between the plane locally tangent to the bottom and the plane 
(s*, z* ) ,  0 is the unit vector in the direction normal to the bottom and 3, is the unit 
vector in the direction orthogonal to Q, and 8.  

The components Q,, and Q,, are found to be related to the longitudinal and 
transverse components Q, and Q, through 

where 7 = ( F i H - D )  is the dimensionless local bottom elevation, and fourth-order 
terms in the products between the longitudinal and transverse slopes have been 
neglected. We point out that downslope gravitational effects retained in (15a, b) are 
very small and, though formally included in the analysis, do not in practice affect the 
solution. Also notice that the effect of variation of longitudinal slope on the direction 
and intensity of sediment transport is neglected herein. 

The angle S is expressed in terms of angle x between the bottom stress and the T ~ -  

direction through the well-established linear relationship (see Ikeda 1982 ; Parker 
1984) 

sin(&) = sin(X)-7q,n (16) 
r 

P@ 
with r an empirical coefficient ranging between 0.3 and 0.6. 

Finally, the intensity of sediment transport is expressed through equilibrium 
relationships. More precisely we employ Meyer-Peter & Muller formula in the form 
given by Chien (1956) 

in the plane case, and Engelund & Hansen’s (1967) formula 
@ = s(e-e,$, ec, = 0.047 (17% b) 

@ = 0.05C-1& ( 1 7 4  
in the dune case, having assumed sediment to be mainly transported as bed load. 

Note that (12) and (17) are essentially equivalent to an assumption of local 
equilibrium of turbulence structure and sediment transport. The appropriate 
boundary and integral conditions to be associated with the above formulation are 

V = & , = O  ( n = f l ) ,  (18a, b) 

ll UDdn = 2, (19a) 

JIl [Fi(H - H,)  - (D - 1 )] dn ds = 0, (19b) 

with H ,  the dimensionless free-surface elevation of the uniform unperturbed flow, 
which express the requirements of impermeability of channel banks to flow and 
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sediment (18), constant flow discharge (19a), and constant averaged reach slope 
(19b). 

3. Linear theory of resonant meanders and spatially growing bars: a 
review 

Let us now consider the response of flow and bed topography to curvature in 
channels satisfying the conditions ( l a )  and (4), ignoring the possible presence of 
migrating (free) bars. We take advantage of the 'weak curvature' assumption and, 
following Blondeaux & Seminara (1985), expand the solution in powers of the 
curvature ratio v in the form: 

(U,  V , H , D )  = (l,O,Ho, 1) + v[ (Ul ,  VIV,,Hl,D,) el+c.c.l+O(v2). (20) 
Hence we assume that perturbations with respect to the basic uniform flow are 
periodic in the longitudinal direction in response to the forcing effect of curvature 
and remain proportional to the chosen 'measure' of curvature, i.e. to the small 
parameter u. This appears to be a reasonable assumption as long as the behaviour of 
our system coincides with that of a weakly forced linear oscillator. 

In order to derive the ordinary differential problem governing the transverse 
dependence of (U,,  V,,  hYl, D l )  we further expand r,, r,, Q,, Q ,  in the form 

7, = Co{ 1 + v[(sl U, +s2Dl)  el + c.c.] +O(v2)) ,  (21 a)  
r ,  = Co{u[(Vl+k4)e l+c .c . ]+O(v2)} ,  (21 b) 
&, = + v[Vl Ul +f2Dl) el + c.c.] + O(u2)), (214  
&n = @ 0 { v [ ( ' V , + k 4 - R ( F ~ H , , . - D 1 ,  -1) el+c.c.] +O(v2) ) ,  ( 2 1 4  

where 

(22 c-e) 

and subscript 0 denotes unperturbed uniform values of Shields stress, bed-load 
function and friction coefficient. 

Substituting from (20), (21), (22) into the governing differential system (5) ,  (6), (7), 
(8) and boundary conditions (18), (19), at O(u)  we find 

(23 a-d) 

(234  

where 

I a11 
a21 

L =  
a31 

a4 1 

a1 2 

a22 

'13 

d 
a23 dn 

a33 

d2 
a43 Jp 

a14 

a24 

a34 

d2 
a44 &p + a 4 5  
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0 0.1 0.2 0.3 
h 

FIGURE 2. Linear response of a meandering channel at resonance: the dimensionless amplitude of 
bottom elevation v1 (=  F:H,-D,)  is plotted versus meander wavenumber h (0, = 0.1, d, = 0.01, 
B = 20.). Solid and dashed curves denote Re (7,) and Im (vl) respectively. 

with 
a,, = ih+/3Cosl, a12 = 0, a,, = ih, a,, = pC,(s2-1), (25a-d)  

a2, = 0, aZ2 = ih+/3Co, a23 = 1,  a2, = 0 ,  (25e-h) 

a,, = ihGo f,, a,, = Q0, = -RFi Go, a,, = RGo, a,, = ihG0 f2.  

and b, = -n@C,, b,  = l-ihk,-@C,k,, b, = b, = 0, b, = k, /R.  (26a-e) 

The differential problem (23) is readily solved in closed form (see Blondeaux & 
Seminara 1985). Its solution exhibits the typical features of forced linear oscillators. 
In particular the amplitude of the response to forcing, i.e. the amplitude of any 
quantity describing flow or bed topography, exhibits an infinite peak (see figure 2)  
for values of the relevant parameters (the width-to-depth ratio of the undisturbed 
channel @ and the meander wavenumber A )  such that a natural response of the 
channel is excited. Figures 3 and 4 respectively show the resonant values A, and pR 
as functions of 8, and d, both for the plane case and for the dune case. 

Blondeaux & Seminara (1985) pointed out that the natural response of the channel 
excited at resonance coincides with a marginally stable and non-migrating 
alternating bar (i.e. temporally neither amplifying nor decaying). The latter also 
coincides with the marginally stable spatially growing bar perturbation first 
investigated by Olesen (1983). This is readily shown. In fact the linear stability of the 
basic uniform flow to spatially growing disturbances can be investigated by setting 

a,, = ih, = 1,  a,, = 0, a,, = ih, (25 i-1) 

(25m-q) 

( U , V , H , D )  = (l ,O,H,,  l)+[(U,,  V,,H,,D,)exp(ihs)+c.c.] (27) 
and assuming the amplitude (U,, Vl,Hl,Dl) to be infinitesimal with h a complex 
wavenumber such that (-Im ( A ) )  is the spatial growth rate of perturbations. The 
governing differential problem for (U,, V,, H,,D,) is then found by substituting from 
(27) into the linearized form of (5 ) ,  ( 6 ) ,  (7 ) ,  (8), (18), (19) with v set equal to zero and 
h assumed to be complex. One finds a differential system identical with the 
homogeneous part of (23), h being now complex. Such a system poses an eigenvalue 
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problem for h which can be shown (see Struiksma et al. 1985; Seminara 1989) to have 
four complex solutions. In general two of them are purely imaginary and correspond 
to exponentially damped or growing perturbations, while the remaining two complex 
solutions describe damped (or growing) spatial oscillations. However, a restricted 
range 0€/3 may exist where all the solutions are purely imaginary. Figure 5 (a,  b)  show 
typical plots of Re ( A )  and Im ( A )  as functions of p for given values of 8, and d, in the 
plane and dune case respectively. The resonant values A, and PR are defined by the 
condition 

i.e. by the values of Re ( A )  and p corresponding to the intersections of the dashed 
lines of figure 5 ( a ,  b )  with the vertical axis. The eigenfunctions belonging to such 
eigenvalues are readily found to be of the form 

Im(A) = 0, (28) 

(q, V?,H?,D?) = A(S,,C,>Sl,Sl) (29) 
with S, = sin (&mn), C ,  = cos (tnmn) ( m  = 1,2,3,  ... ) (3% b)  
and A an arbitrary infinitesimal constant. 
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FIGURE 4. The resonant values of the width ratio of the channel B, are plotted versus Shields stress 
Oo for given values of dimensionless grain roughness ds (d, ranges as in figure 3) : (a)  plane bed; ( b )  
dune-covered bed. 

It is worth pointing out that the eigensolution described above is only the first of 
an infinite sequence of ‘modes’, each corresponding to a different value of m. Higher- 
order modes are such that their resonant conditions correspond to increasingly 
higher values of B and h according to the following relationships: 

In  the present investigation we are only concerned with the first spatially growing 
mode, corresponding to m = I. The experiments of Struiksma et al. (1985) and 
Struiksma & Crosato (1989) clearly show that the above perturbations do arise in 
response to some finite perturbation of the initial conditions for flow and bed 
topography. 
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FIGURE 5. The complex wavenumber A of spatially growing bars as a function of the width ratio 
p. Solid and dashed curves denote Re ( A )  and Im ( A )  respectively: (a) 8, = 0.1, d, = 0.01, plane bed; 
[ b )  0, = 0.3, d, = 0.005, dune-covered bed. 

However, both the linear theory of meanders and the linear theory of spatially 
growing bars are restricted by the severe limitation of linearity of perturbations. The 
latter implies an unbounded response of meanders at resonance and an indefinite 
exponential growth of spatially growing bars for p > PR. In the next sections we 
show that nonlinearity prevents both of the above effects through mechanisms which 
are strongly interrelated. 

4. Weakly nonlinear evolution of spatially growing bars in straight 
channels 

The theory of weakly nonlinear development of spatially growing steady bars in 
straight cohesionless channels is strongly related to the theory of temporally growing 
migrating bars proposed by Colombini et al. (1987) (hereinafter referred to as CST). 
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Hence we set v = 0 in ( 5 ) ,  (6 ) ,  (7),  (8), (18), (19)  and seek a finite-amplitude solution 
restricting our attention to the weakly nonlinear regime defined by the conditions 

with e 4 1. Physically (32)  describe an experiment where in a uniform straight 
channel flow with cohesionless bottom, characterized by width aspect ratio /3 slightly 
perturbed with respect to the threshold value /9, for spatial growth of perturbations, 
a steady perturbation is imposed in the initial cross-section and is allowed to grow 
spatially. We now investigate whether the initial perturbation asymptotically 
reaches an equilibrium amplitude. 

The weakly nonlinear theory of CST is readily modified to describe spatial rather 
than temporal development. Herein we do not wish to repeat CST’s analysis but 
merely emphasize the modifications required to allow for spatial rather than 
temporal growth and refer the reader to CST for details. 

Let us introduce a spatial ‘slow variable’ [ such that 

/ 3 = / 9 R ( l + e ) ,  Re(A)=A, (32% b )  

y =  es; (33) 
hence we can make the following substitution 

Following CST we can analyse the cascade process induced by weakly nonlinear 
interactions of the fundamental ‘spatial ’ perturbation with itself and with the basic 
flow. Hence we are led to derive an expansion for the weakly nonlinear solution in 
powers of ei in the form 

(basic flow) 
+ e i{~(y )  e: [s,(u:, d:, h:), C, + c.c.) (fundamental) 

(second 
harmonics) 

( U , D , H ,  V )  = ( 1 , 1 , H o , O )  

I +4A2em2(U%,d%, hE),S2@%) 
+ (@2, a&, h&, @&)I + C.C. 
+ I.1I2[(C2(uF0, a&, h&L S2@%) + (u&,d&, 
+~{e:[S,(u~(S),dE(Y),h~(Y)), C,?JE(5)1 +c.c.) 

.&)I> 

+ O ( l )  (higher harmonics) (35 a )  

The reader aware of CST’s work will recognize that the structure of (35) is identical 
with that developed in CST to analyse temporally growing bars, but for two 
fundamental differences : 

(i) the solution is centred around the critical conditions for spatial (rather than 
temporal) growth, namely 

Re ( A )  = A,, /9 = P R ,  w = 0 ,  (36a-c) 

with w denoting the angular frequency of perturbations; 
(ii) the complex amplitude A is a slowly varying function of space rather than 

time. 
An expansion similar to (35) can be set up for (78, 7,, QS, Q,) (see (29) ,  (14) ,  (33)  and 
(48)  of CST). The latter, substituted in (5)-(8) along with (32) ,  (33) ,  (34) ,  (35)  and 
with the condition of vanishing v, leads to a cascade of linear algebraic systems 
which, up to order e, are identical with those found in CST except for the parameters 
(AR,pR,O) replacing ( A c , / 3 c , ~ c ) .  Hence we simply recall the main results for 
completeness. 

where eR, = exp [m(iA,s)] ( m  = 1 , 2 , .  . . ). (35b) 
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FIGURE 6. The real parts of the coefficients ur and a: of the amplitude equation for steady bars 
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80 

( b )  Re (4% 

O ( 4  
The linear algebraic system for (@, v:, h:, d:) reads 

where Lta@ = 1,2, . . . ; q = I ,  2, . . . ) is the linear algebraic operator obtained from the 
linear differential operator L defined in (24) replacing [Re (A), Im (A), B, d/dn, d2/dn2] 
by [qh,, 0, PR, b)x ( - l)p, - (&p~)~] everywhere but in a2* where (dldn) is replaced by 
[(-l)P-lp)x]. Notice that (AR, PR) are eigenvalues of (37) since they satisfy the 
dispersion relationship associated with (37). 
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dA 

dA 

dA 

P P  IAI2+PV +PZ,, 

P 3  IA12+PFA+PFlZ 

P V  IAI2+P?A +a:z 

O ( 4  
The algebraic systems governing the coefficients of second harmonics are non- 

homogeneous and may be written in the general form 

(38a-d)  

where the non-homogeneous terms b f g ,  bfQ, bgq, bfQ are obtained from (37) ,  (38) ,  (39) ,  
(40) of CST. 

O(2) 
Finally the linear system for the coefficients of the fundamental reproduced a t  

(39a-d) 

where the quantities pE8 coincide with the corresponding quantities of (50) of CST, 
with (A,, p,, w,)  replaced by ( A R , P R ,  01, while P?, P%, P:, P: are 

p? = -@-h:,  p: = -v:, p: = -uF-d?, pk = -@,(f,u:+f2dF). 
(40 a-d) 

For the system (39)  a solvability condition has to be satisfied because its 
homogeneous part admits a non-trivial solution. Solvability requires that the 
following condition be satisfied : 

From (41) the following nonlinear amplitude equation is readily derived : 

+aFA IAI2 = 0, 

where a: and a: are obtained from the corresponding complex coefficients a1 and a2 
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FIGURE I. The real parts of the coefficients u: and ut of the amplitude equation for steady bars 
are given as function of Shields stress 0, and grain roughness parameter ds (dune-covered bed) : (a) 
Re(aT); (a) Re(af ) .  

of the amplitude equation (52) of CST for temporally growing bars (evaluated at 
resonance) and 

In (43) DCk denotes the determinant 

Olz3 has the form (44) with a% replaced by the coefficients alk of CST, and p ,  is the 
coefficient appearing in (50) of CST. 
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The amplitude equation (42) is of Landau-Stuart type. Hence provided 

89% [Re (a31 * s g n w  (a:)] 

lAel = [-Re (a:)/Re (a:)$. 

it  exhibits a supercritical equilibrium solution : 

(45) 

In  figures 6 (a ,  b) and 7 (a ,  b) we plot Re (a:) and Re (a?) as functions of 8, and d,  for 
the plane and dune cases respectively. These plots show the supercritical character 
of the bifurcation within a wide range of values of Shields and grain roughness 
parameters, which confirms that under supercritical conditions the initial per- 
turbation does develop asymptotically in space into an equilibrium periodic 
configuration consisting of steady bars. 

5. Weakly nonlinear theory of near-resonant meanders 
Let us now investigate flow and bed topography in weakly meandering channels 

characterized by wavenumber h and undisturbed width-to-depth ratio /3 falling 
within a neighbourhood of the resonant values, A, and PR respectively, for given 
values of the unperturbed Shields stress 8, and grain roughness d,. We look for a 
solution of the nonlinear problem (5)-(8) such that the singular resonant behaviour 
occurring at the linear level be suppressed. 

The main questions to which we need preliminary answers are: 
(i) what is the order of magnitude of the amplitude of the solution in terms of the 

small parameter v such that suppression of the singularity may be achieved ? 
(ii) what is the width of the 'resonant range' to be investigated 1 

We are mainly concerned here with steady-state solutions of the problem. 
However, it will prove useful in the following to know the transient behaviour of the 
channel response. A preliminary prediction of the latter behaviour requires an 
answer to a third question: 

In order to answer the above questions we follow a classical argument employed in 
analysing weakly nonlinear resonant oscillations. Let us assume the fundamental 
component of the perturbation to be of order vz with x a real exponent to be 
determined. Moreover, a t  lowest order, exactly at resonance, the solution must 
coincide with the 'natural ' solution of the homogeneous linear problem describing 
marginally stable non-migrating and non-amplifying free bars. Hence at lowest order 
we can write 

(iii) what is the timescale of the transient ? 

(U ,  H ,  D, V )  = v"{A[(uF, I$, d:) S,, v: C,] eF + c.c.}, (46) 

with A a complex amplitude function to be determined. 
Nonlinear interactions involving the fundamental and the basic uniform flow 

produce a t  second order, O( second harmonics, both longitudinal and transverse. 
At  third order: O ( P ) ,  the fundamental is reproduced giving rise to secular terms. 
Hence, provided the condition 

is satisfied, the reproduction of the fundamental occurs at the same order, O(v) ,  as the 
forcing effect of curvature and the requirement of suppression of secular terms also 
leads to suppressing the singular behaviour of the solution predicted by the linear 
theory. 

3x = 1 (47) 
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Similarly, for variations of P and A in a neighbourhood of PR and A, respectively 
to be felt a t  order u ,  their order must be ui. 

Finally a similar argument suggests that the time variable appropriate to describe 
the transient evolution of the amplitude function A is the 'slow ' variable T defined 
as (A). 

G .  Serninura and M .  Tubino 

Hence we expand the solution in the following form 

P=/3,(1+vgp1), A=A,+v;A,, T =  u%, (48 a-c) 
( u , H , D )  = ( I ,H , , ,  i )+  &AS, e?(u?, h:, d y )  +c.c.] 

d 3  + (uk, hk9 d 3 l )  

+ vi{A2eP [C,(ug, h?,, d g )  + (u&, h&, d&)] +c.c. 

+ IAI2[C,(u:, 

+ ~ { e F [ ~ l l ( n ) , H l , ( n ) , ~ , , ( n ) l + c . c . } + O ( ~ ~ ,  v e 3 ,  (49) 
v = C, eF vF) + ui[(A2eF vF, S, + C.C. ) + [ A  12 uz s,] 

+u[eF V,,(n)+c.c.]+O($, ve?), (50) 
where P1 and A, are O(1) constants. 

The expansions (49) and (50) clearly show that the fundamental component of the 
perturbation and the second harmonics have a structure identical with that of the 
finite-amplitude spatial bars investigated in the previous section. The characteristic 
feature of the present solution is that the amplitude of the perturbation is not 
controlled by a bifurcation process from the basic uniform solution, as in the case of 
finite-amplitude spatial bars, but rather by the forcing effect of curvature and by 
nonlinearity. As a result the amplitude equation governing the dependence of the 
amplitude function A on the relevant parameters will be seen to exhibit some non- 
homogeneous contribution associated with channel curvature. 

On substituting from (48), (49) and (50) into the governing equations and equating 
terms of order vi we obviously recover the unforced linear algebraic problem (37). 
Similarly equating terms of order ui we recover problems for the harmonics 22, 20, 
02 and 00 which are still unaffected by curvature, hence coincide with the linear 
algebraic systems (38) discussed in the previous sections. 

A t  third order, O(u), the linear algebraic system governing the fundamental 
reproduced by nonlinear interactions includes non-homogeneous terms associated 
with curvature. We find 

v,, = 0 (n = *I) ,  

( ~ W l 1 - ~ , , L n  = b? (n  = fl), (51 e ,  fl 
where LR is the linear differential operator L defined in (24)) bE6 are the quantities 
given by (26a-e), all evaluated at  resonant conditions ( A  = AR,P = PR) and 

IT = P1 PF +iAl P E  $? = p1 P? + iA1 P k  
9: = P1pF+iA,pz, 6: = P1pF+iAlp:. (52a-d) 

Furthermore pk is 
p k  = d:-Fi hF. (53) 
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Since the homogeneous part of the differential problem (51) admits a non-trivial 
solution we require that a solvability condition must be satisfied (see Coddington & 
Levinson 1955, p. 294). A convenient procedure to derive the solvability condition is 
to transform (51) into a single-order ordinary differential equation for V,, with 
suitable boundary conditions. By constructing an appropriate set of adjoint 
complementary boundary forms and imposing the Fredholm alternative we find the 
following amplitude equation : 

dA 
-+&yA+aFAIA12+aF = 0, dT &, = /3,a?+iA,aF, 

where a t ,  a:, a? are identical with the complex coefficients of the amplitude 
equation (42) describing the finite-amplitude development of spatially growing bars, 
and aFis the non-homogeneous terms associated with the forcing effect of curvature. 

We point out that (54a) represents the fundamental result of the present theory. 
I ts  solution gives the dependence of the complex amplitude A on the parameters of 
the problem and through the expansions (48), (49), (50) completely determines the 
solution for the flow and bottom topography in weakly meandering channels up to 
third order. 

6. Solutions of the amplitude equation and their stability 

following closed. form 
Equation (54) admits steady-state solutions A ,  which can be obtained in the 

where &I2 is a solution of the following cubic algebraic equation derived from (54a) 
and (55) : 

(herein an overbar denotes the complex conjugate). 
In general (56) exhibits one real and two complex-conjugate solutions. Under these 

conditions, the complex solutions being meaningless, the response of the channel is 
unique (see figure 8a, b) .  However, as shown in figure 8(a) ,  ranges of A, exists, for 
given 8, and d,,  in which the three solutions of (56) are all real. Hence the response 
of the channel may not be unique. This feature of the present results is hardly 
surprising as it characterizes the nonlinear behaviour of resonant oscillators (see, for 
instance, Thompson 8z Stewart 1986, p. 72). However, this finding poses the problem 
of ascertaining which of the three real solutions is appropriate for a given set of initial 
conditions. In order to answer this question we investigate the linear stability of the 
above three solutions. Let us then set 

A = A , + a  (57) 

and assume a to be infinitesimally small. On substituting from (57) into (54a) and 
linearizing we find the following linear ordinary differential equation for a(T) : 

-- da - y1a+y2ci, 
d T  
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FIGURE 8. The weakly nonlinear steady-state solution for the amplitude function of near-resonant 
meanders is plotted versus the perturbations ( a )  of meander wavenumber A, and (b )  of channel 
width ratio p1 with respect to the resonant values, for different values of Shields stress 8, and grain 
roughness d,: (i) 8, = 0.1, d, = 0.01; (ii) 8, = 0.08, d ,  = 0.05. Solid and dashed lines denote stable 
and unstable solutions respectively. 

where the complex coefficients y1 and y2 have the form 

y1 = - q - 2 a 3 4 , 1 2 ,  yz = -aFAE. (59a, b)  

From (58) simple algebraic manipulations lead to the following ordinary differential 
equation : 
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FIQURE 9. The linear solution and the fundamental component of the weakly nonlinear solution for 
the perturbation of the longitudinal velocity at the outer wall are plotted versus meander 
wavenumber A for different values of the curvature ratio v (8,: 0.08, d, = 0.05, B = 12). Thin 
curves: linear theory [UUJ, , -~  ; thick curves: nonlinear theory [ v s A u ~ .  Solid and dashed curves 
denote real and imaginary parts respectively. (a) v = 0.01 ; ( b )  v = 0.025. 

It follows that the stability of the steady-state solutions is governed by the sign of 
the real part of p1 and p2. Since both rl and r2 are real quantities, it follows that 
solutions are unstable if r2 is negative or if r2 is positive with r1 negative, stable 
otherwise. Calculations reveal that the upper branch of the solution (see figure 8) is 
invariably stable while the lower branch and the loop joining the upper branch to the 
lower branch are invariably unstable. 

The latter finding suggests that the fully nonlinear equation (Ma) has to be solved 
in order to ascertain the structure of the possibly unsteady solutions bifurcating from 
the unstable steady solutions. We have solved (54a) numerically by means of a 
RungeKutta scheme of fourth order. The numerical solution shows that the 
unstable steady solution corresponding to the lower branch bifurcates into a time- 
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periodic solution, while the unstable solution corresponding to the loop bifurcates 
into the steady upper-branch solution. Hence theory predicts that as the 
wavenumber increases a discontinuity arises in the solution which shifts from the 
steady upper-branch behaviour to  the time-periodic behaviour bifurcating from the 
lower branch. 

That two different types of behaviour should arise below and above resonant 
conditions is not surprising, though this does not seem to have been recognized 
before. Indeed the same behaviour is exhibited by the linear forced solution 
described in $3, the branch of solution with h > A, being unstable. In  fact free 
migrating bars do not amplify below resonance (hence no homogeneous solution of 
the linear unsteady problem exists), but they are unstable when h > A,. Hence under 
the latter conditions the linearly unstable homogeneous part of the solution interacts 
nonlinearly with the steady forced part giving rise to the time-periodic pattern 
detected numerically. As a result of the above nonlinear interaction the bifurcation 
into a time-periodic solution is shifted toward values of wavenumber larger than A,, 
i.e. positive values of A,, as shown in figure 8(a) .  For the same reason a discontinuity 
arises in the solution of (56) in terms of the width ratio, for values of /3 slightly larger 
than pR (see figure 86) .  

Figure 9 allows a comparison between the weakly nonlinear resonant solution 
developed herein and the linear forced solution. Notice that in the plots only the 
contribution associated with the fundamental harmonic in the longitudinal direction 
e l ,  i.e. the O(vi) component of the nonlinear solution (49), has been kept. The figure 
shows that, rather than exhibiting a sharp peak within the resonant range, the 
system response follows a fairly smooth trend with a relatively weak maximum for 
values of meander wavenumber larger than the resonant value. 

I n  other words, not only do nonlinear effects suppress the singularity exhibited by 
the linear solutions at  h = A, but they also control the bed response within a fairly 
wide range of values of meander wavenumber whose amplitude depends on the 
values of curvature ratio v through (49). 

7. Nonlinear resonance and bend instability 
Before we compare the above results with experimental observations we first 

analyse how the effects of nonlinearity close to  resonance affect the formulation and 
the predictions of a bend instability theory. 

Indeed such reflections are needed since we are confronted with a fairly peculiar 
stability problem where the most unstable perturbations also coincide with resonant 
perturbations so that the order of magnitude of the excitation does not coincide with 
the order of magnitude of the response of the system. I n  other words the stability 
problem will be seen to  be intrinsically nonlinear. 

A bend stability theory can be formulated by associating a bank equation with the 
governing equations for flow and bottom topography. Attempts to describe in some 
detail the mechanics of bank erosion have been proposed in the recent literature 
(Hasegawa 1989; Mosselman 1989). All of them are based on steady models of the 
process, neglecting its character which is known to be intermittent in nature (Nanson 
& Hickin 1983). Furthermore they all assume bank erosion to be associated with 
some measure of the near-bank flow perturbation induced by curvature, thus 
assuming that the channel cross-section would otherwise be in equilibrium. The work 
of Parker (1978) suggests that  under bedload-dominated conditions the latter 
requirement implies that  the average Shields stress must exceed the critical value by 
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a small amount. A second implication of the above models is that some other 
mechanism must exist to allow for the accretion of the convex bank such as to keep 
the channel width constant while the concave bank is progressively eroded. This 
mechanism is related to sediment deposition ; however, its details have never been 
investigated and will require elucidation. A third basic assumption of bend theories 
is that the rate of bank erosion must be much smaller than the characteristic speed 
of alternating bars. This assumption may well hold under field conditions but is 
usually not met in the laboratory : this invariably leads to the eventual development 
of a braided stream in laboratory experiments. In other words the ‘bend’ approach 
is likely to describe more appropriately the actual phenomenon occurring in the field 
rather than that reproduced in model experiments. A further assumption of bend 
theories is that the influence of previously formed free bars is neglected, although 
there exists experimental evidence suggesting that bend instability proceeds after 
migrating bars have already undergone a finite-amplitude development. A 
quantitative description of the above influence is given in Seminara & Tubino (1989). 

It is outside the scope of the present paper to attempt setting firmer foundations 
of bend stability theory. We are, rather, interested in this section in ascertaining how 
classical bend theories can accommodate the effects of flow nonlinearities close to 
resonance. Hence we simply follow an approach similar to that originally proposed 
by Ikeda et al. (1981) and write the bank erosion equation in the form 

In  (63) y*(z*,  t* )  is the transverse Cartesian coordinate of the channel axis measured 
with respect to a Cartesian longitudinal axis x* (see figure l ) ,  CT(X*, t* )  is the angle 
between the local direction of the channel axis and the x* axis, and E is an erosion 
coefficient. It should be noticed that components of flow perturbations which are 
symmetric in the transverse direction may induce bank erosion but do not lead to 
any lateral shift of the channel axis. In order to account for this feature the flow 
property assumed to induce bank erosion is taken to be the difference between the 
values attained by perturbations of longitudinal velocity at the two banks. We also 
point out that the work of Parker (1978) on the equilibrium shape of the cross-section 
of gravel rivers, where it is shown that equilibrium is not incompatible with sediment 
transport, would suggest that the perturbation of some measure of bank stress rather 
than of near-bank velocity is presumably a more appropriate quantity to associate 
with the rate of bank retreat. However, since alternative choices of any specific near- 
bank property do not alter the qualitative features of the process we want to analyse, 
we keep the assumption (63) which corresponds to the one originally proposed by 
Ikeda et al. (1981) and has also received some support from the recent work of 
Hasegawa (1989). 

In order to use results of nonlinear resonant meander theory it is necessary to write 
(63) in intrinsic coordinates. Recalling (1) and (4) and allowing for meander growth 
and migration we can write 

where the intrinsic meander wavenumber h and the meander wave speed c = $ , t  do 
vary during meander growth; hence, they are in general functions of dimensionless 
curvature u. 
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From (64) one readily finds 

(65) 

(66) 

. u  
(r = i-exp[iA(s-$)]+c.c., 

A 

V 
y = -exp[iA(s-$)]+c.c.+O 

A2 
hence 

and 

where y is y* scaled by B* and A, is the dimensionless Cartesian meander 
wavenumber. From (67) it follows that, as long as (u/A,)  remains small, as a first 
approximation we can take A to be constant and equal to A,. Furthermore (65) 
implies that cos ((r) can be approximated by 1 ,  neglecting the contribution of order 
(u /AJ2 .  The dimensionless form of (63) then becomes 

E 
Y,t = - ( ~ l t & = l - ~ l n = - l ) .  (68) 

Qo 

Since the parameter E/Qo  is usually small, the rate of bend development being of the 
order of metres/year (hence E - 10-7-10-8) with Q0 ranging between 
the adjustment of flow and bed topography to the planimetric development of the 
channel axis can be taken to occur instantaneously at the timescale of the latter and 
(68) can be decoupled from the governing equations of flow and bed topography. 

If we follow the latter procedure, substitute from (66) into (68) and use for U the 
solution in the form (49) with (ARs) replaced by [A,R(s-$)] (A: being the resonant 
Cartesian wavenumber), we find 

and 

Integration of the real and imaginary parts of (69) then gives 

ti+v,, c = v-i, (70a, b )  1 1 
with uo the initial amplitude of the perturbation of channel curvature. Calculations 
show that at resonance Re (A, u?) is positive and Im (A ,  u?) is negative both in the 
plane and in the dune cases, hence instability does indeed occur with positive values 
of the meander wave speed. 

The above results deserve some comments. The nonlinear character of the resonant 
response of bed topography to the forcing effect of curvature leads to the growth rate 
u , ~  being proportional to ui rather than v, which implies an algebraic rather than 
exponential growth of channel curvature. Furthermore, meander wave speed is 
found to decrease as curvature increases, which corresponds to physical expectation. 

We point out that a singular behaviour of c is predicted by (70) a t  t = 0 as vo -+ 0. 
However as u,, + 0 the timescale of meander growth becomes comparable with the 
timescale of evolution of bottom topography. This is readily seen. Indeed if we define 

T = u i t ,  v = uJV(T), (71 a ,  b )  

the amplitude function A reaches the equilibrium amplitude A ,  through a transient 
process described by the time variable T. Hence for values of uo small enough for the 
relationship 

E/Qo = e$ (72) 
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to hold with e - O ( l ) ,  equation (70a) is no longer valid and the bank erosion equation 
for N(T) and the evolution equation for A ( T )  are coupled. As v increases, meander 
development tends to the algebraic growth predicted by the decoupled solution 
(70). 

In the above discussion we have taken the view typical of classical bend stability 
theories where the channel topography is initially disturbed only by an infinitesimal 
perturbation of channel curvature. The analysis would need modification to 
accommodate the effects of spatial bars if they are initially present in the originally 
straight channel. In this case, which corresponds to the viewpoint of the Dutch 
school, the perturbations forcing bank erosion are independent of curvature so that 
the bank erosion equation (69) predicts a linear growth of v in the initial stage of 
meander development. As v has grown large enough for the relationship 

ui - O(p-pE)t (73) 

to hold, spatial bars essentially become forced bars and their amplitude is affected by 
curvature according to (55), (56). At this stage meander growth proceeds according 
to the algebraic behaviour described by (70) and already discussed. 

8. Comparison with experimental results of Colombini, Tubino & Whiting 

The main achievement of the present work appears to be the suggestion that the 
prediction of bed topography in meandering channels characterized by near-resonant 
conditions requires the use of nonlinear models since resonance operates in a form 
which is markedly different from that predicted by linear analyses as shown in figure 
9. 

The possible impact of these results on the problem of modelling river dynamics 
seemed to dictate the importance of a detailed and systematic laboratory experiment 
able to check the actual correspondence between theoretical model and physical 
reality. These experiments were carefully designed and performed in the fluvial 
laboratory of the Hydraulic Institute of the University of Genoa by Colombini et al. 
(1990). The reader is referred to the latter paper for a detailed description and 
discussion of the experimental procedure. Here we briefly summarize the main 
results to allow some comparison with our theoretical findings. 

Each experiment was performed by constructing a sinuous channel consisting of 
at  least 3.5 meanders, with the channel axis following a sine curve. The values of the 
curvature ratio v, the average slope S and the grain size d,* were kept constant 
through all the experiments, while the channel wavenumber and the width ratio were 
varied in a range as broad as possible close to the resonant values. The value of v 
chosen was 0.05 as a compromise between the requirements of v being large enough 
for suppression of migrating bars and small enough for the perturbation approach to 
be valid. This value of u corresponds to natural meanders in the initial-intermediate 
stage of development. The values of X and d,* were 0.006 and 0.76 mm respectively, 
while the Cartesian wavenumber A, ranged between 0.15 and 0.30, and the values of 
the width ratio /3 fell in the range from 11 to 20. Notice that conditions were sought 
that would avoid the presence of small-scale bedforms (ripples, dunes) which might 
have made the interpretation of results in the light of present theory less reliable. 

The typical output of each experiment was the development of an equilibrium 
configuration of the forced bars, sometimes disturbed by small propagating sand 
waves seen to be born within the pool at the concave bank and vanish downstream. 

(1990) 
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Harmonics of bottom elevation 
FIGURE 10. The main harmonics of the Fourier spectrum of bed elevation of run W25Ql4 of 
Colombini et al. (1990). The amplitude of harmonics is given as percentage of the total. The first 
and second indexes reported on the abscissa refer to the longitudinal and transverse directions 
respectively. 

For the smallest wavenumber (A ,  = 0.15) migrating alternate bars were also 
detected, whose amplitude was smaller than that of the fixed bars. Bed topography 
was preserved a t  the end of each experiment and measured with a laser scanner 
device, with a precision of 0.01 mm, driven by a stepper motor and run by a personal 
computer. 

A useful operation performed by Colombini et al. (1990) on the experimental data 
was a two-dimensional Fourier analysis which allowed the contribution of the 
various harmonics in the longitudinal and transverse directions to be identified. 
Figure 10 shows a typical spectrum of the amplitudes of bottom harmonics as found 
by Colombini et al. (1990). This plot clearly supports the weakly nonlinear structure 
of the response of bed topography in that the fundamental 11 harmonic plays the 
most important role while higher harmonics are present which appear to be 
generated by a cascade process showing intensities which do decay as the order of the 
harmonics increases. It should be noticed that in general the fundamental 11 
harmonic is found to only account for 15-30% of the total spectrum of bottom 
topography. Moreover, the intensity of second harmonics (22, 02, 20) is about one- 
third of the intensity of the fundamental. These findings can be taken as strong, 
though indirect, evidence that a nonlinear resonance effect was indeed operating in 
the experimental process. In fact in the absence of resonance a straightforward 
perturbation scheme in integer powers of v would predict a much faster decay of the 
intensity of higher harmonics produced by nonlinear interactions : a t  each order m 
the intensity should be O ( v )  smaller than the intensity of harmonics of order (m- 1). 
Hence in Colombini et al.'s (1990) experiments one would expect second-order 
harmonics to have an intensity of about 5 %  of the intensity of the fundamental, 
which is very far from observations. 

Once the weakly nonlinear structure of the solution and its resonant character has 
been confirmed the question arises of what comparison between theory and 
experiments is most appropriate. Indeed the experimental results suggest that the 
overall contribution of fundamental and second harmonics, which are the only ones 
derived in the present theory, only account for about 50-60 YO of the total 'energy'. 
Hence a detailed comparison is more appropriately performed between the behaviour 
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FIQIJRE 11. The dimensionless amplitude of the first harmonic of bottom elevation vll as predicted 
by the present weakly nonlinear theory (solid curve) and by the linear theory (dashed curve) is 
plotted versus the width ratio of the channel /3 and compared with the experimental findings of 
Colombini et aZ. (1990) (0) for different values of meander wavenumber. The resonant range is 
defined by (48a) with pl = f 1. (a) A, = 0.2; ( b )  A, = 0.15. 

of the various harmonics rather than between the overall results concerning bottom 
elevation. 

In  figure 11 (a, b )  we compare the amplitude of the first harmonic of the solution 
for the bottom elevation as predicted by linear and weakly nonlinear theories with 
the values experimentally observed for the two set of experiments with A, equal to 
0.2 and 0.15 respectively. For a given channel geometry and given values of channel 
width, average slope and grain sizes, a continuous curve which represents the 
predicted response of the bottom to variations of flow discharge changes can be 
drawn in terms of width ratio. The Shields stress 8, and roughness parameter d, 
change accordingly along the theoretical curves plotted in figure 11. The comparison 
seems to be fairly satisfactory if account is taken of the fact that the weakly 

10 FLM 244 
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P 
FIGURE 12. The phase shift uR of the scour hole with respect to the bend apex associated with the 
first harmonic as predicted by the present weakly nonlinear theory (solid curve) and by the linear 
theory (dashed curve) is plotted versus the width ratio of the channel B and compared with the 
experimental findings of Colombini et al. (1990) (0) for different values of meander wavenumber. 
The resonant range is defined by (48a) with /I, = f 1. (a) A, = 0.2; ( b )  A, = 0.15. 

nonlinear solution strictly applies only within a neighbourhood O(vi) of the resonant 
values of A and /3 (the resonant range reported in the figures). Notice that /IR is close 
to  13 and A, is in the range from 0.165 to 0.175 for values of Shields and roughness 
parameter typical of these experiments. 

Similar comparisons for the position of the scour hole with respect to the bend apex 
are given in figure 12 (a, b).  The latter quantity is given in terms of the dimensionless 
parameter cF = (A ,  Ax)/n, with Ax dimensionless longitudinal distance from the 
bend apex of the position of maximum scour associated with the first harmonic, so 
that crF changes from negative to positive values as the scour hole shifts from 
upstream to downstream. 
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Figures 11 and 12 clearly show that the linear theory provides quite poor 
predictions in a fairly wide range close to resonance. 

We do not pursue in detail comparisons for the second harmonics. It suffices here 
to state that weakly nonlinear theory overestimates the overall contribution of 
second harmonics close to resonance by a factor of roughly 20 %. Furthermore the 
intensities of the various second harmonics are not uniformly distributed but show 
a peak in the 22 harmonic. This is not in agreement with experimental observations. 

The latter discrepancy is most likely because the experimental value of v 
nonlinearity is not quite as weak as our theory would require. In fact notice that the 
amplitude lAel attains values of about 2-3, hence vi [A,( falls in the range from 0.85 
to 1.15. Intensities of higher harmonics do exhibit a decreasing trend because 
coefficients in the expansion are found to decrease with increasing order. However, 
the effect of higher-order terms on the low-order harmonics cannot be assumed quite 
negligible as assumed in the weakly nonlinear approach. 

To overcome the above deficiencies one should resort to a fully nonlinear spectral 
solution of the problem of the type obtained by Colombini & Tubino (1990) for the 
case of migrating free bars in straight channels. 

9. Discussion 
Let us finally summarize and discuss our main results. 
The theory developed in $54 and 5 shows that the structure of forced bars in a 

neighbourhood of resonant conditions is related to that of spatial ‘free ’ bars in the 
sense that spatial bars ‘deformed ’ by curvature develop in near-resonant meanders 
or, alternatively, spatial bars initially present in the straight channel configuration 
are deformed by curvature as meandering develops. Mathematically, curvature 
provides a forcing term in the equilibrium-amplitude equation of forced bars which 
would otherwise be identical to the equation governing ‘free ’ spatial bars. 

We have also shown that the effects of nonlinearity damp the infinite peak in the 
response of resonant meanders. Furthermore, the effects of resonance are felt within 
a range which widens, as v increases, like vg. Within this range the linear response is 
obviously markedly different from the nonlinear one. These findings are based on a 
weakly nonlinear analysis valid in a neighbourhood of the resonant conditions. How 
far from resonance its validity can be extended is an important question which will 
require elucidation based on strongly nonlinear numerical solutions of the type 
recently developed by Colombini & Tubino (1990) for free migrating bars. 

A related question is that of ascertaining the significance of the non-uniqueness of 
the solution of the amplitude equation in the form (56). This feature always occurs, 
but the corresponding range of values of h is found to fall increasingly far from 
resonance as v increases. Hence when v is large enough for the present theory (which 
ignores the coexistence of migrating free bars with forced bars) to hold, the loop 
occurs relatively far from resonance where the validity of our weakly nonlinear 
approach must be questioned. Physically one would expect a discontinuity in the 
response of channel topography as h varies. This feature has not been detected in 
Colombini et al.’s (1990) experiments. However, in order to infer that a non-unique 
response does not actually occur we would need a wider range of experiments and the 
results of fully nonlinear calculation valid for large values of A. This is matter for 
future research. 

We have dso  reconciled, through the analysis of $7 ,  the intrinsic nonlinearity of 
the near-resonant channel response with the bend stability approach. It may be of 

10-2 
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some interest to point out that nonlinear resonance also provides a mechanism able 
to excite third harmonics of channel curvature much faster than one would expect 
in the absence of resonance. Third harmonics are often present in mature meanders 
leading to their characteristic fattening and skewing first revealed by Kinoshita 
(1961). 

Parker et al. (1983) have analysed the possible existence of trains of bends of 
permanent form whose shape was characterized by a sine-generated curve plus third 
harmonics of smaller amplitude. The latter work was based on a linear model for flow 
and bed topography ; hence it neglected ‘ flow ’ nonlinearities but preserved 
‘geometric ’ nonlinearities. The present theory helps understanding how ‘geometric ’ 
nonlinearities are generated. In  fact the bank erosion equation suggests that the 
latter are forced by the cascade of higher harmonics of near-bank velocity whose 
amplitude decays as their order increases. In other words, ‘flow’ nonlinearities 
generate ‘geometric’ nonlinearities : in particular the rate of growth of third 
harmonics is O(v) in near-resonant conditions while it remains much smaller, O(v3) ,  
far from resonance. Again one would hardly expect the latter intensity to be strong 
enough to actually develop geometric nonlinearities and this seems to support the 
idea that finite-amplitude bends do develop from near-resonant conditions. 

Hence the main geomorphological implication of the present work is the 
explanation of the generation mechanism of the characteristic fattening and skewing 
typical of mature meanders. 

Several features of the problem will require further attention in the future. Firstly, 
as previously pointed out, experimental observations show that the overall effect of 
harmonics higher than the second is significant. This is hardly surprising since the 
near-resonant expansion involves as a small parameter, which implies a fairly slow 
decay of the amplitudes of higher harmonics. A full numerical, possibly spectral, 
solution of the problem is required if quantitatively accurate results are sought. The 
latter will also allow the actual structure of the solution in the ranges corresponding 
to the loop and the lower branch of the weakly nonlinear steady solution to be 
ascertained. 

The present results strongly suggest that the literature on flow and bed topography 
in meandering channels based on linear theories needs to be revisited. Indeed for 
fairly small channel curvatures free bars coexist with forced bars and interact 
nonlinearly as discussed in TS. As curvature exceeds the threshold value for free-bar 
suppression steady forced bars keep a nonlinear near-resonant structure within a 
fairly wide range of values of wavenumber and width-to-depth ratio. 

A second extension of the present work is required. For small enough values of v 
migrating free bars are not suppressed. Tubino & Seminara’s (1990) work on free-bar 
suppression employed a linear theory for forced bars also in the resonant range. A 
modification of the latter analysis is required in a neighbourhood of resonance. This 
would provide a complete description of flow and bed topography in a regular 
sequence of near-resonant meanders. 

A third obvious development of the present work would be achieved by calculating 
third-order effects in our near-resonant expansion, a calculation which is still 
analytically feasible. This would allow our knowledge of flow and bed topography to 
be incorporated into the framework of a bend stability theory able to predict the 
development of Kinoshita’s curve. 

Various other questions still await an answer. In particular, what is the mechanism 
which controls the formation of multiple bars in tortuous meanders ? A possible line 
to attack this problem might be to analyse whether the periodic pattern associated 
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with a regular sequence of meanders might be subject to some kind of ultraharmonic 
Mathieu instability. Furthermore, what is the origin of irregularity of meander 
patterns observed in nature ? Is it related to non-uniformity of local environmental 
conditions as suggested in the geomorphological literature or is it inherent in the 
deterministic behaviour of rivers as nonlinear dynamical systems 1 This question 
calls for the modelling of tortuous meanders, a still open subject. Its investigation 
would also hopefully allow one to understand the reduction of meander growth rate 
observed for large-amplitude meanders (Nanson & Hickin 1983). 

Finally, among the various simplifying assumptions embodied in our formulation, 
two seem to warrant particular attention in future research: neglect of suspended 
load and of the unsteady, intermittent, character of meander development. 
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